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SUMMARY

A new stabilized finite element method is considered for the time-dependent Stokes problem, based on
the lowest-order P1−P0 and Q1−P0 elements that do not satisfy the discrete inf–sup condition. The new
stabilized method is characterized by the features that it does not require approximation of the pressure
derivatives, specification of mesh-dependent parameters and edge-based data structures, always leads to
symmetric linear systems and hence can be applied to existing codes with a little additional effort. The
stability of the method is derived under some regularity assumptions. Error estimates for the approximate
velocity and pressure are obtained by applying the technique of the Galerkin finite element method. Some
numerical results are also given, which show that the new stabilized method is highly efficient for the
time-dependent Stokes problem. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of efficient finite element methods for the Stokes equations and the Navier–Stokes
equations is a key component in incompressible flow simulations. By the use of a primitive-
variable formulation, the importance of ensuring the compatibility of the approximations for the
velocity and the pressure by satisfying the so-called inf–sup condition is widely understood.
However, various simple mixed elements like the lowest-order P1−P0 (linear velocity, constant
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pressure) triangular element and Q1−P0 (bilinear velocity, constant pressure) quadrilateral element
not satisfying the inf–sup condition may also work well by using the stabilized finite element
methods.

For these lowest-order elements not satisfying the inf–sup condition, various stabilized techniques
have been proposed and studied. Some of these stabilized techniques belong to the class of residual-
based methods or are closely related to residual-based stabilized methods; for example, the stream
upwind Petrov–Galerkin (SUPG) method [1, 2], the Brezzi–Pitkaranta method [3], the Douglas–
Wang method [4], the well-known Galerkin least squares (GLS) method [5–7], the method of
bubble function enrichment [8, 9], the related unusual stabilized methods [10] and the recent
methods arising from the enrichment of the finite element space by multiscale functions [11, 12] (see
[13] for a review on these methods). Most of these residual-based methods necessarily introduce
stabilization parameters either explicitly or implicitly which, in practice, are still being determined
by trial and error. Moreover, there is no satisfactory answer to the stabilized parameters in all
situations. Therefore, the development of mixed finite elements free from stabilization parameters
has become increasingly important.

On the other hand, there are some stabilized mixed finite element methods involving non-
residual stabilization. Examples include the pressure gradient projection (PGP) method [14–16],
the related local pressure gradient stabilization (LPS) method [17] in which the incompressibility
constraint is relaxed by subtracting the discontinuous pressure gradient from its projection onto a
piecewise polynomial space, and the local and global pressure jump formulations [18–20] where
the continuity equation is relaxed using the jumps of pressure across the interelement interfaces.
However, it is clear that both PGP and LPS methods are not appropriate for pairs with constant
pressure elements, while the local and global pressure jump formulations require edge-based data
structures and a subdivision of grids into patches.

Some of the above techniques have also been extended to transient incompressible flow
problems. For example, the SUPG formulation has been extended to the transient Navier–Stokes
equations in [21, 22]; the GLS method has been studied and compared with the characteristic-based
split method for the time-dependent Navier–Stokes equations [23] and the Brezzi–Pitkaranta
technique has been studied for the transient Stokes problem [24]. In [25], combining implicit
time integration with stabilized spatial discretization, Bochev, Gunzburger and Shadid have
studied and compared three stabilization methods (namely, GLS, Douglas–Wang and Brezzi–
Pitkaranta) for the transient Stokes problem. In [26], the bubble enrichment stabilized method
has been studied for the transient Stokes problem. Depending on whether bubbles are allowed
to evolve with time or they are considered quasi-static, the authors derived two different
methods. Using a macroelement technique, He et al. have studied a fully discrete stabilized
P1−P0 and Q1−P0 finite element solution to the time-dependent Navier–Stokes equations
based on the backward Euler and Crank–Nicolson extrapolation schemes of time discretization
in [27, 28], respectively. Based on two local Gauss integrations, a new stabilized finite element
method has been proposed and compared numerically with other methods (standard Galerkin,
penalty, GLS and multiscale enrichment) for the transient Navier–Stokes equations by using the
lowest equal-order pair of finite elements in [29]. We refer the reader, for example, to [30–32]
and the references therein for other stabilized methods for the transient incompressible flow
problems.

Recently, based on polynomial pressure projection, a new family of stabilized methods for
the stationary Stokes equations has been proposed and studied in [33, 34]. Based on a detailed
study of the instabilities of the lowest-order velocity–pressure pairs, these new methods add terms
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to the continuity equation particularly suited to stabilize these instabilities. These added terms
depend on the projection operators of pressure whose actions can be evaluated locally at the
element level using the standard finite element techniques. The new family of stabilized methods
is characterized by the following features. First, the methods do not require approximation of the
pressure derivatives, specification of mesh-dependent parameters and edge-based data structures.
Second, the methods are unconditionally stable, optimally accurate, parameter-free, and always
lead to symmetric linear systems. Consequently, the new stabilized methods can be applied to
existing codes with a little additional effort. Based on two local Gauss integrations, a similar
parameter-free stabilized finite element method has also been proposed for the steady Stokes and
Navier–Stokes equations in [35, 36], respectively, in the context of the lowest equal-order P1−P1
and Q1−Q1 elements. Unfortunately, this stabilized method does not work for the P1−P0 or
Q1−P0 element.
This paper aims to extend the work of Bochev et al. [33, 34] to the two-dimensional time-

dependent Stokes problem. We only confine our attention to the P1−P0 triangular element and
the Q1−P0 quadrilateral element in the theoretical analysis. However, for comparison, numerical
results for the lowest equal-order P1−P1 triangular element and the stable MIN element are also
given. Following the abstract framework of Li et al. [29], we first define the stabilized method for
the lowest-order conforming P1−P0 and Q1−P0 elements, then show their well-posedness and
derive the error estimates. Our theoretical results are similar to that in [29]. However, this paper
is different from [29] due to that they use different stabilization methods to stabilize different
elements for different equations. The main work of this paper is to use the pressure projection
technique to stabilize the lowest-order conforming P1−P0 and Q1−P0 elements for which the
stabilization technique proposed in [29] (i.e. using the difference between a consistent and an
under-integrated mass matrices computed by two different-order local Gauss integrations to offset
the inf–sup condition) does not work. Although we also give the numerical results for the P1−P1
element, we use a naturally different pressure projection operator from that in [29]. Therefore, this
paper can be considered as a sequel of the work of Bochev et al. in [33, 34] and a complement
to the work of [29] in the sense that it demonstrates the high efficiency of the local pressure
projection stabilized methods not only for the steady problems, but also for the unsteady problems
and illustrates the great flexibility of the definition of the pressure projection operator.

The remainder of this paper is organized as follows. In the next section, some basic notations and
preliminary results for the time-dependent Stokes problem are stated. In Section 3, the stabilized
finite element method is introduced. Stability and error estimates for the stabilized finite element
solution are derived in Section 4. In Section 5, some numerical results are given to illustrate the
theoretical results. Finally, some conclusion are drawn in Section 6.

2. PRELIMINARIES

Let� be a bounded domain with Lipschitz-continuous boundary �� in R2. We shall use the standard
notation for Sobolev spaces Ws,p(�), Ws,p(�)2 and their associated norms and seminorms;
see, e.g. [37, 38]. For p=2, we denote Hs(�)=Ws,2(�),Hs(�)2=Ws,2(�)2 and H1

0 (�)={v∈
H1(�) :v|�� =0}, where v|�� =0 is in the sense of trace, ‖·‖s,� =‖·‖s,2,�. Owing to the norm
equivalence between ‖u‖1 and ‖∇u‖0 on H1

0 (�), we use the same notation for them in this
paper.
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We consider the time-dependent incompressible Stokes problem in R2

ut −��u+∇ p = f in �×(0,T ]
divu = 0 in �×(0,T ]

u = 0 on ��×(0,T ]
u = u0 on �×{0}

(1)

where u=u(x, t)=(u1(x, t),u2(x, t)) is the velocity, p= p(x, t) the pressure, f = f (x, t) the
prescribed body force, �>0 the viscosity, u0 the initial velocity, T the given final time and
ut =�u/�t . We assume that the data (u0, f ) satisfy the assumption:

A0. u0∈H2(�)2∩H1
0 (�)2 with divu0=0 and f , ft ∈L2(0,T ; L2(�)2) with

‖u0‖2+
(∫ T

0
(‖ f ‖20+‖ ft‖20)dt

)1/2

�c (2)

Here and hereafter, we use the letter c to denote a generic positive constant which is independent
of the mesh parameter, while it may depend on the data (�,�,u0, f,T ) and stand for different
values at its different occurrences.

For a given function f ∈L2(0,T ; L2(�)2), the variational formulation of problem (1) reads:
Find a pair of (u, p)∈L2(0,T ;H1

0 (�)2)×L2(0,T ; L2
0(�)) such that

(ut ,v)+B((u, p);(v,q))=( f,v) ∀(v,q)∈H1
0 (�)2×L2

0(�) (3)

u(0)=u0 (4)

where

L2
0(�)=

{
q∈L2(�) :

∫
�
q dx=0

}

(·, ·) denotes the standard inner-product of L2(�), the bilinear form B is defined as

B((u, p);(v,q))=a(u,v)−d(v, p)+d(u,q)

and

a(u,v)=�(∇u,∇v), d(v,q)=(divv,q) ∀u,v∈H1
0 (�)2, q∈L2

0(�)

As for the existence, uniqueness and regularity of a global strong solution to the time-dependent
Stokes problems, we have the following results [39]:
Lemma 1
Assume that �� is of C2 or � is a two-dimensional bounded convex polygon and A0 hold, then for
any given function f ∈L2(0,T ; L2(�)2), problem (1) admits a unique solution (u, p) satisfying
the following regularities:

sup
0<t�T

(‖ut (t)‖20+‖u(t)‖22+‖p(t)‖21)�c (5)

sup
0<t�T

�(t)‖ut (t)‖21+
∫ T

0
�(t)(‖utt (t)‖20+‖ut (t)‖22+‖pt (t)‖21)dt�c (6)
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where �(t)=min{1, t} whose appearance in (6) is due to the non-smoothness of the time derivations
of the velocity u and the pressure p at t=0.

3. STABILIZED FINITE ELEMENT METHOD

Assume T h(�)={K } be a regular triangulation (see, e.g. [40, 41]) of � into triangles or quadri-
laterals with mesh size h>0. Associated with the mesh T h(�), the finite element subspaces of
interest in this paper are defined by

R1(K )=
{
P1(K ) if K is triangular

Q1(K ) if K is quadrilateral
(7)

giving the continuous piecewise (bi)linear velocity subspace

Xh ={vh ∈H1
0 (�)2 :vh |K ∈ R1(K )2 ∀K ∈T h(�)}

and the piecewise constant pressure subspace

Mh ={qh ∈L2
0(�) :qh |K ∈ P0(K ) ∀K ∈T h(�)}

It is noted that neither of these methods is stable in the standard Babuška–Brezzi sense; P1−P0
triangle ‘lock’ on regular grids (since there are more discrete incompressibility constraints than
velocity degrees of freedom), and the Q1−P0 quadrilateral is the most infamous example of an
unstable mixed method, as elucidated by Sani et al. [42].

Introducing the following pressure projection operator (see [33, 34])
� : L2(�)→ R1 (8)

having a continuous range and the following properties

(p,qh)=(�p,qh) ∀p∈L2(�), qh ∈ R1 (9)

‖�p‖0�c‖p‖0 ∀p∈L2(�) (10)

‖p−�p‖0�ch‖p‖1 ∀p∈H1(�) (11)

we derive the stabilized finite element formulation of problem (3)–(4): Find (uh(t), ph(t))∈ Xh×
Mh , t ∈[0,T ], such that

(uht ,vh)+B((uh, ph);(vh,qh))=( f,vh) ∀(vh, ph)∈ Xh×Mh (12)

uh(0)=u0h (13)

where u0h is an approximation of u0,

B((uh, ph);(vh,qh))= B((uh, ph);(vh,qh))+C(ph,qh)

is the new stabilized bilinear form and C(·, ·) is the stabilization term (see [33, 34]) defined by

C(p,q)=((I −�)p, (I −�)q) ∀p,q∈L2(�) (14)

The following theorem establishes the weak coercivity of the bilinear form B((u, p);(v,q)) for
the lowest-order finite element pairs.
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Theorem 1 (Bochev et al. [33])
Let (Xh,Mh) be defined as above. Then there exists a positive constant �, independent of h,
such that

|B((u, p);(v,q))|�c(‖u‖1+‖p‖0)(‖v‖1+‖q‖0) ∀(u, p), (v,q)∈H1
0 (�)2×L2

0(�) (15)

�(‖uh‖1+‖ph‖0)� sup
(vh ,qh)∈Xh×Mh

|B((uh, ph);(vh,qh))|
‖vh‖1+‖qh‖0 ∀(uh, ph)∈ Xh×Mh (16)

4. STABILITY ANALYSIS AND ERROR ESTIMATES

We first define a projection operator (Rh,Qh) :H1
0 (�)2×L2

0(�)→ Xh×Mh by

B((Rh(v,q),Qh(v,q));(vh,qh))= B((v,q);(vh,qh))
∀(v,q)∈H1

0 (�)2×L2
0(�), (vh,qh)∈ Xh×Mh

(17)

Note that due to Theorem 1, (Rh,Qh) is well defined and satisfies the following approximate
properties:

Lemma 2 (Li et al. [29])
Under the assumptions of Lemma 1 and Theorem 1, the projection operator (Rh,Qh) satisfies

‖v−Rh(v,q)‖1+‖q−Qh(v,q)‖0�c(‖v‖1+‖q‖0) (18)

for all (v,q)∈H1
0 (�)2×L2

0(�) and

‖v−Rh(v,q)‖0+h(‖v−Rh(v,q)‖1+‖q−Qh(v,q)‖0)�ch2(‖v‖2+‖q‖1) (19)

for all (v,q)∈D(A)×(H1(�)∩L2
0(�)), where D(A)={v∈H2(�)2∩H1

0 (�)2 :divv=0}.
Owing to u0∈D(A), we can define p0∈H1(�)∩L2

0(�) [39], then define (u0h, p0h)=
(Rh(u0, p0),Qh(u0, p0)). Further, we set (eh,�h)=(Rh(u, p)−uh,Qh(u, p)− ph), (E,F)=
(u−Rh(u, p), p−Qh(u, p)) and (e,�)=(u−uh, p− ph)=(eh+E,�h+F). From Lemma 1 and
(19), we have, for t ∈[0,T ],

‖E‖0+h‖E‖1�ch2,
∫ t

0
�(s)‖Et‖20 ds�ch4 (20)

4.1. Stability analysis

Theorem 2
Under the assumptions of Lemma 1 and Theorem 1, the solution (uh, ph) of (12) and (13) satisfies

‖uh(t)‖20+
∫ t

0
(�‖uh‖21+‖ph‖20+‖uht ||20)ds�c (21)

for all t ∈[0,T ].
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Proof
Taking (v,q)=(uh, ph) in (12) and using the Schwarz, Poincaré and Young inequalities, we have

1

2

d

dt
‖uh‖20+�‖uh‖21+C(ph, ph)�

1

2
�‖uh‖21+ 1

2
�−1C2

�‖ f ‖20 (22)

where C� is the constant of the Poincaré inequality. Integrating (22) over [0, t] and noting that

‖u0h‖0=‖Rh(u0, p0)‖0�‖u0‖0+‖u0−Rh(u0, p0)‖0�c(‖u0‖1+‖p0‖0)
we obtain

‖uh(t)‖20+
∫ t

0
(�‖uh‖21+2C(ph, ph))ds�c (23)

Combining (16) with (12), and using the Schwarz and Poincaré inequalities, we get

�(‖uh‖1+‖ph‖0) � sup
(vh ,qh)∈Xh×Mh

|B((uh, ph);(vh,qh))|
‖vh‖1+‖qh‖0

= sup
(vh ,qh)∈Xh×Mh

|( f,vh)−(uht ,vh)|
‖vh‖1+‖qh‖0

� sup
(vh ,qh)∈Xh×Mh

C�(‖ f ‖0+‖uht‖0)‖vh‖1
‖vh‖1+‖qh‖0

�C�(‖ f ‖0+‖uht‖0)
which yields

‖ph‖20�
2C2

�

�2
(‖ f ‖20+‖uht‖20)

Integrating the above inequality from 0 to t , we find∫ t

0
‖ph‖20 ds�

2C2
�

�2

∫ t

0
(‖ f ‖20+‖uht‖20)ds (24)

We now estimate
∫ t
0 ‖uht‖20 ds. By differentiating the term d(uh,qh)+C(ph,qh) with respect to

t in (12), then setting (vh,qh)=(uht , ph), one gets

‖uht‖20+ 1

2

d

dt
(�‖uh‖21+C(ph, ph))=( f,uht )�

1

2
‖ f ‖20+ 1

2
‖uht‖20

Integrating the above inequality over [0, t], using (2) and noting that

‖u0h‖21�‖u0‖21+‖u0−Rh(u0, p0)‖21�c(‖u0‖21+‖p0‖20)
and

C(p0h, p0h)�c‖p0h‖20�c(‖p0‖20+‖p0−Qh(u0, p0)‖20)�c(‖u0‖21+‖p0‖20)
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we obtain ∫ t

0
‖uht‖20 ds+�‖uh(t)‖21+C(ph(t), ph(t))�c (25)

Combining (25) with (24), (23) and (2), we complete the proof of (21). �

4.2. Error estimates

This subsection is devoted to the H1-error estimate of the discrete velocity uh and the L2-error
estimate of the discrete pressure.

Lemma 3
Under the conditions of Lemma 1 and Theorem 1, it holds that, for t ∈[0,T ],

‖u(t)−uh(t)‖20+
∫ t

0
(�‖u−uh‖21+C(p− ph, p− ph))ds�ch2 (26)

Proof
Subtracting (12) from (3) with (v,q)=(vh,qh), we find that

(ut −uht ,vh)+B((u−uh, p− ph);(vh,qh))=C(p,qh) ∀(vh,qh)∈ Xh×Mh (27)

which, together with (17), yields

(ut −uht ,vh)+B((eh,�h);(vh,qh))=0 ∀(vh,qh)∈ Xh×Mh (28)

Setting (vh,qh)=(eh,�h) in (28), we deduce

(ut −uht ,eh)+�‖eh‖21+C(�h,�h)=0

Noting u−uh =eh+E and using (19), we obtain

1

2

d

dt
‖u−uh‖20+�‖eh‖21+C(�h,�h) = (ut −uht ,E)

� (‖ut‖0+‖uht‖0)‖E‖0
� ch2(‖ut‖0+‖uht‖0)(‖u‖2+‖p‖1)

Integrating the above inequality from 0 to t and using the Hölder inequality, we have

‖u(t)−uh(t)‖20+2
∫ t

0
(�‖eh‖21+C(�h,�h))ds

�ch2
(∫ t

0
(‖ut‖20+‖uht‖20)ds

)1/2(∫ t

0
(‖u‖22+‖p‖21)ds

)1/2

+‖u0−u0h‖20 (29)

Applying Theorem 2, Lemmas 2 and 1, we obtain

‖u(t)−uh(t)‖20+2
∫ t

0
(�‖eh‖21+C(�h,�h))ds�ch2 (30)

which, combining with the triangle inequality, (19), (14) and (11), gives (26). �
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Theorem 3
Under the assumptions of Lemma 1 and Theorem 1, the solution (uh, ph) of problem (12) and (13)
satisfies the following error estimates:

�1/2(t)�‖u(t)−uh(t)‖1+�(t)(‖ut (t)−uht (t)‖0+‖p(t)− ph(t)‖0)�ch (31)

for all t ∈[0,T ].
Proof
The proof of Theorem 3 consists of Lemmas 4–6. �

Lemma 4
Under the assumptions of Lemma 1 and Theorem 1, the following error estimates hold for t ∈[0,T ]

�(t)�‖u(t)−uh(t)‖21+
∫ t

0
�(s)‖ut (s)−uht (s)‖20 ds�ch2 (32)

Proof
Differentiating the terms d(eh,qh)+C(�h,qh) in (28) with respect to t and taking (vh,qh)=
(eht ,�h), we get

(ut −uht ,eht )+ 1

2

d

dt
(�‖eh‖21+C(�h,�h))=0

Noting eht =ut −uht −Et and using the Schwarz inequality, we obtain

‖ut −uht‖20+ d

dt
(�‖eh‖21+C(�h,�h))�‖Et‖20

Multiplying the above inequality by �(t) and noting

0��(t)�1,
d

dt
�(t)�1 ∀t�0

we get

�(t)‖ut −uht‖20+ d

dt
(�(t)(�‖eh‖21+C(�h,�h)))��‖eh‖21+C(�h,�h)+�(t)‖Et‖20 (33)

Integrating (33) over [0, t], then combining the triangle inequality with (20) and (30), we complete
the proof. �

Lemma 5
Under the assumptions of Lemma 1 and Theorem 1, it holds that, for t ∈[0,T ]

�2(t)‖ut (t)−uht (t)‖20+
∫ t

0
�2(s)�‖ut (s)−uht (s)‖21 ds�ch2 (34)

Proof
Differentiating (28) with respect to t then taking (vh,qh)=(eht ,�ht ), we find

(utt −uhtt ,eht )+�‖eht‖21+C(�ht ,�ht )=0
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Noting that eht =ut −uht −Et and using the Schwarz inequality, we deduce

1

2

d

dt
‖ut −uht‖20+�‖eht‖21+C(�ht ,�ht )�(‖utt‖0+‖uhtt‖0)‖Et‖0

Multiplying the above inequality by �2(t), one gets

d

dt
(�2(t)‖ut −uht‖20)+2�2(t)(�‖eht‖21+C(�ht ,�ht ))

�2�(t)‖ut −uht‖20+2�2(t)(‖utt‖0+‖uhtt‖0)‖Et‖0
Integrating the above inequality from 0 to t , applying Lemma 4 and (20), we obtain

�2(t)‖ut −uht‖20+2
∫ t

0
�2(s)(�‖eht‖21+C(�ht ,�ht ))ds

�2
∫ t

0
�(s)‖ut −uht‖20 ds+c

(∫ t

0
�2(s)(‖utt‖20 ds+‖uhtt‖20)ds

)1/2(∫ t

0
�2(s)‖Et‖20 ds

)1/2

�ch2+ch2
(∫ t

0
�2(s)(‖utt‖20 ds+‖uhtt‖20)ds

)1/2

(35)

We now estimate
∫ t
0 �2(s)‖uhtt‖20 ds. Differentiating (12) with respect to t and then further differ-

entiating the term d(uht ,qh)+C(pht ,qh) with respect to t , taking (vh,qh)=(uhtt , pht ) and using
the Schwarz inequality, we get

‖uhtt‖20+ d

dt
(�‖uht‖21+C(pht , pht ))�‖ ft‖20 (36)

Note that a similar argument for (23) yields

‖uht (t)‖20+
∫ t

0
(�‖uht‖21+2C(pht , pht ))ds�c (37)

Multiplying (36) by �2(t), then integrating it from 0 to t , using (37), (2) and noting �(t)�1, we find

∫ t

0
�2(t)‖uhtt‖20 ds+�2(t)(�‖uht‖21+C(pht , pht ))�c

which, together with (35), (2), the triangle inequality and (20), yields the estimate (34). �

Lemma 6
Under the assumptions of Lemma 1 and Theorem 1, the following estimate holds for t ∈[0,T ]:

�(t)‖p(t)− ph(t)‖0�ch (38)
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Proof
From (16), (28) and (34), we find

�(t)‖�h‖0 � �(t)�−1 sup
(vh ,ph)∈Xh×Mh

|B((eh,�h);(vh,qh))|
‖vh‖1+‖qh‖0

= �(t)�−1 sup
(vh ,qh)∈Xh×Mh

|(ut −uht ,vh)|
‖vh‖1+‖qh‖0

� �(t)�−1 sup
(vh ,qh)∈Xh×Mh

C�‖ut −uht‖0‖vh‖1
‖vh‖1+‖qh‖0

� �−1C��(t)‖ut −uht‖0
� ch (39)

Combining (39) with the triangle inequality, (19) and (5), we finish the proof. �

4.3. L2-error estimates

In order to estimate the error ‖u−uh‖0, we need an auxiliary backward Stokes problem: Find
(�(t),�(t))∈H1

0 (�)2×L2
0(�) such that, for t ∈[0,T ],

(v,�t )−B((v,q);(�,�))=(v,u−uh) ∀(v,q)∈H1
0 (�)2×L2

0(�), �(T )=0 (40)

This problem is well-posed and has a unique solution (�,�) with property [43]:

sup
0�t�T

‖�(t)‖21+
∫ T

0
(‖�‖22+‖�‖21+‖�t‖20)dt�c

∫ T

0
‖u−uh‖20 dt (41)

We introduce the dual Galerkin projection (�h(t),�h(t)) of (�(t),�(t)):

B((vh,qh);(�h,�h))= B((vh,qh);(�,�)) ∀(vh,qh)∈ Xh×Mh

which yields

B((vh,qh);(�−�h,�−�h))=C(qh,�) ∀(vh,qh)∈ Xh×Mh (42)

A slight modification to the arguments for Lemma 2 (see [29]) yields
‖�−�h‖0+h(‖�−�h‖1+‖�−�h‖0)�ch2(‖�‖2+‖�‖1) (43)

Lemma 7
Under the assumptions of Lemma 1 and Theorem 1, the following estimate holds:

∫ T

0
C(ph, ph)ds�ch2 (44)
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Proof
Noting that C(ph, ph)=C(p− ph, p− ph)−C(p, p)+2C(p, ph), applying Lemma 3 and
combining the Schwarz, Young inequalities with (14), (11) and (5), we see∫ T

0
C(ph, ph)ds �

∫ T

0
(C(p− ph, p− ph)+C(p, p))ds+2

∫ T

0
C1/2(p, p)C1/2(ph, ph)ds

� ch2+2
∫ T

0
(C(p, p)+ 1

4
C(ph, ph))ds

� ch2+ch2+ 1

2

∫ T

0
C(ph, ph)ds

which yields (44). �

Lemma 8
Under the assumptions of Lemma 1 and Theorem 1, it holds that∫ T

0
‖u−uh‖20 ds�ch4 (45)

Proof
Taking (v,q)=(e,�)=(u−uh, p− ph) in (40), we get

(e,�t )−B((e,�);(�,�))=‖e‖20 (46)

Adding (46) and (27) with (vh,qh)=(�h,�h), noting that (e,�)=(eh+E,�h+F) and using (42),
we obtain

‖e‖20 = −B((e,�);(�−�h,�−�h))+C(�,�)−C(p,�h)+(e,�t )+(et ,�h)

= −C(�h,�)−B((E,F);(�−�h,�−�h))

+C(p,�−�h)−C(ph,�)+ d

dt
(e,�)−(et ,�−�h)

Integrating the above equality from 0 to T , and noting �(T )=0, we have∫ T

0
‖e(s)‖20 ds = −

∫ T

0
C(�h,�)ds−

∫ T

0
B((E,F);(�−�h,�−�h))ds+

∫ T

0
C(p,�−�h)ds

−
∫ T

0
C(ph,�)ds−

∫ T

0
(et ,�−�h)ds−(e(0),�(0)) (47)

From the Schwarz and Hölder inequalities, (30), (14), (9)–(11) and (41), we have∣∣∣∣
∫ T

0
C(�h,�)ds

∣∣∣∣ �
∫ T

0
C1/2(�h,�h)C

1/2(�,�)ds

�
(∫ T

0
(C(�h,�h)ds)

1/2
(∫ T

0
C(�,�)

)
ds

)1/2

� ch2
(∫ T

0
‖�‖21 ds

)1/2

�ch2
(∫ T

0
‖e(s)‖20 ds

)1/2

(48)
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Similarly, applying Lemma 7, Lemma 1, (14), (9)–(11), (41) and (43), one gets∣∣∣∣
∫ T

0
C(ph,�)ds

∣∣∣∣ �
(∫ T

0
(C(ph, ph)ds

)1/2(∫ T

0
C(�,�))ds

)1/2

�ch2
(∫ T

0
‖�‖21 ds

)1/2

� ch2
(∫ T

0
‖e(s)‖20 ds

)1/2

(49)

∣∣∣∣
∫ T

0
C(p,�−�h)ds

∣∣∣∣ �
(∫ T

0
C(p, p)ds

)1/2(∫ T

0
C(�−�h,�−�h)ds

)1/2

� ch2
(∫ T

0
‖p‖21 ds

)1/2(∫ T

0
(‖�‖22+‖�‖21)ds

)1/2

� ch2
(∫ T

0
‖e(s)‖20 ds

)1/2

(50)

From (43), (41), (25) and Lemma 1, we see∣∣∣∣
∫ T

0
(et ,�−�h)ds

∣∣∣∣ � ch2
∫ T

0
(‖ut‖0+‖uht‖0)(‖�‖2+‖�‖1)ds

� ch2
(∫ T

0
(‖ut‖20+‖uht‖20)ds

)1/2(∫ T

0
(‖�‖22+‖�‖21)ds

)1/2

� ch2
(∫ T

0
‖e(s)‖20 ds

)1/2

(51)

As for the bilinear term, by applying Theorem 1, Lemma 2, Lemma 1, (41) and (43), we obtain∣∣∣∣
∫ T

0
B((E,F);(�−�h,�−�h))ds

∣∣∣∣ � c
∫ T

0
(‖E‖1+‖F‖0)(‖�−�h‖1+‖�−�h‖0)ds

� ch2
∫ T

0
(‖u‖2+‖p‖1)(‖�‖2+‖�‖1)ds

� ch2
(∫ T

0
(‖u‖22+‖p‖21)ds

)1/2(∫ T

0
(‖�‖22+‖�‖21)ds

)1/2

� ch2
(∫ T

0
‖e(s)‖20 ds

)1/2

(52)

In addition, by the definition of u0h and (41), we have

|e(0),�(0)|=|(u0−Rh(u0, p0),�(0))|�ch2‖�(0)‖1�ch2
(∫ T

0
‖e(s)‖20 ds

)1/2

(53)

Combining (47) with (48)–(53), we complete the proof of (45). �
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Theorem 4
Under the assumptions of Lemma 1 and Theorem 1, it holds that, for t ∈[0,T ],

�1/2(t)‖u(t)−uh(t)‖0�ch2 (54)

Proof
Taking (vh,qh)=(eh,�h) in (28), we see

1

2

d

dt
‖eh‖20+�‖eh‖21+C(�h,�h)�‖Et‖0‖eh‖0 (55)

Note that from (20), Lemmas 8, 2 and (5), we have∫ t

0
�(t)‖Et‖20 ds�ch4 (56)

∫ t

0
‖eh‖20�2

∫ T

0
(‖u−uh‖20+‖E‖20)ds�ch4 (57)

‖u0−u0h‖0=‖u0−R(u0, p0)‖0�ch2 (58)

Multiplying (55) by �(t) then integrating it from 0 to t , using (56)–(58) gives

�(t)‖eh‖20+2
∫ T

0
�(t)(�‖eh‖21+C(�h,�h))ds�ch4 (59)

Combining the triangle inequality with (59) and (20), we finish the proof. �

5. NUMERICAL RESULTS

In this section, we present two series of numerical results to illustrate the theoretical analysis of
the new stabilized method for the time-dependent Stokes problem. For comparison, we also give
the numerical results for the P1−P1 element using the stabilization technique proposed in [33]
and the results for the stable MINI element. In all experiments, � is the unit square [0,1]×[0,1]
in R2. The mesh consists of triangular elements that are obtained by dividing � into sub-squares
of equal size and then drawing the diagonal in each sub-square; see Figure 1. The viscosity is
set as �=1.0. The projection operator �, which stabilizes the lowest-order conforming P1−P0
element, is the Clément interpolant satisfying (9)–(11) (see [41]). The definition of �0 (see [33]
for detailed information), which stabilizes the lowest equal-order P1−P1 element is a standard
local L2 projection operator:

�0q|K = 1

Meas(K )

∫
K
q dx ∀K ∈T h(�), q∈L2(�)

which also satisfies the properties (9)–(11) [41]. The software Freefem++ developed by Hecht
et al. [44] is used in our experiments. We also use the UMFPACK routine [45] to solve the linear
systems arising at each time step both in Examples 1 and 2.
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Figure 1. Uniform triangulation of � into triangles.

5.1. Analytical solution

In this test, we perform one step of the implicit Euler method with time step size �t=0.005 for
the exact solution

u1=�sin2(�x)sin(2�y)cos(t)

u2=−�sin(2�x)sin2(�y)cos(t)

p=10cos(�x)cos(�y)cos(t)

The initial condition in (1) is set equal to the exact solution and f is computed by evaluating the
momentum equation of problem (1) for the exact solution.

Results for the new stabilized P1−P0, P1−P1 and MIN elements are shown in Tables I–III,
respectively, in which

Kdiv= max
K∈T h(�)

∣∣∣∣
∫
K
divuh dx

∣∣∣∣
The experimental rates of convergence with respect to the mesh size h are calculated by the
formula log(Ei/Ei+1)/log(hi/hi+1), where Ei and Ei+1 are the relative errors corresponding to
the meshes of size hi and hi+1, respectively. In our numerical results, there is not much difference
in H1-errors of the velocity among the three methods. However, as shown in Tables I, II and III,
the difference is big in L2-errors of the velocity. The L2-errors of the velocity both obtained by the
new stabilized P1−P0 and P1−P1 elements are bigger than that of the velocity computed by MIN
element, while the accuracy in L2-norm of the velocity computed by stabilized P1−P1 element
is higher than that of the stabilized P1−P0 element; see Figure 2(a) and (b). A large difference is
observed among the three methods for the pressure approximation in accuracy and convergence
rates. Both the stabilized P1−P1 element and the stable MINI element show a superconvergence
behavior for the pressure approximation; the former is better than the latter in terms of accuracy and
convergence rate; see Figure 2(c). Between the stabilized P1−P0 and P1−P1 elements, the P1−P1
element shows a better accuracy in L2-norm both for the velocity and pressure. An interesting
find is that the stabilized P1−P0 element has smaller Kdiv values than MINI element whose Kdiv
values, in turn, are smaller than that of the stabilized P1−P1 element.
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Table I. Finite element errors after one implicit Euler step: new stabilized P1−P0 element.

1/h ‖u−uh‖0,�
‖u‖0,�

‖u−uh‖1,�
‖u‖1,�

‖p−ph‖0,�
‖p‖0,� Kdiv uL2 rate uH1 rate pL2 rate

10 0.0730941 0.252504 0.576377 0.0167081
20 0.0188265 0.127949 0.253199 0.00233646 1.95699 0.980734 1.18674
30 0.00841335 0.0854539 0.160507 0.000699486 1.98648 0.995538 1.12424
40 0.00474356 0.0641217 0.117702 0.000296267 1.99189 0.998301 1.07819
50 0.00304085 0.0513063 0.0930414 0.00015184 1.99267 0.999221 1.05365
60 0.0021149 0.0427582 0.0769787 8.79014e−005 1.99169 0.999619 1.03946
70 0.00155627 0.0366509 0.0656717 5.53715e−005 1.98973 0.999819 1.03055
80 0.00119358 0.0320699 0.0572745 3.70899e−005 1.98707 0.99993 1.02457
90 0.000944868 0.0285066 0.0507888 2.60541e−005 1.98385 0.999995 1.02035
100 0.000766948 0.0256558 0.0456269 1.89894e−005 1.98012 1.00003 1.01724

Table II. Finite element errors after one implicit Euler step: new stabilized P1−P1 element.

1/h ‖u−uh‖0,�
‖u‖0,�

‖u−uh‖1,�
‖u‖1,�

‖p−ph‖0,�
‖p‖0,� Kdiv uL2 rate uH1 rate pL2 rate

10 0.0669041 0.252863 0.31111 0.017304
20 0.0171354 0.12803 0.0916053 0.0023884 1.96511 0.981875 1.76392
30 0.00765053 0.0854892 0.0432043 0.000716096 1.98876 0.99608 1.85355
40 0.00431236 0.0641416 0.0253648 0.000303123 1.99279 0.998659 1.85128
50 0.0027643 0.0513191 0.0168382 0.000155452 1.99289 0.999493 1.83608
60 0.00192265 0.0427672 0.0120858 8.9977e−005 1.99142 0.999841 1.81889
70 0.00141495 0.0366575 0.00915423 5.66965e−005 1.98903 1.00001 1.80221
80 0.00108536 0.0320749 0.0072112 3.79739e−005 1.98595 1.00009 1.78669
90 0.000859359 0.0285106 0.0058525 2.668e−005 1.98227 1.00014 1.77246
100 0.000697692 0.0256591 0.0048622 1.94444e−005 1.97806 1.00016 1.75947

Table III. Finite element errors after one implicit Euler step: stable MINI element.

1/h ‖u−uh‖0,�
‖u‖0,�

‖u−uh‖1,�
‖u‖1,�

‖p−ph‖0,�
‖p‖0,� Kdiv uL2 rate uH1 rate pL2 rate

10 0.0419119 0.243917 0.352077 0.0177416
20 0.0103905 0.121541 0.0988782 0.00238496 2.0121 1.00495 1.83217
30 0.00460743 0.0808947 0.0499966 0.000706559 2.00564 1.00405 1.68186
40 0.00259091 0.0606146 0.0313927 0.000297343 2.00104 1.00324 1.61768
50 0.00165931 0.0484626 0.022038 0.000152424 1.99694 1.00269 1.58557
60 0.00115384 0.0403687 0.0165612 8.82874e−005 1.99266 1.00229 1.56703
70 0.000849298 0.0345911 0.0130311 5.56103e−005 1.98794 1.00199 1.55513
80 0.00065175 0.03026 0.0105992 3.72626e−005 1.98267 1.00177 1.54688
90 0.000516372 0.0268928 0.00884008 2.61743e−005 1.9768 1.00158 1.54084
100 0.000419572 0.0241999 0.00751905 1.90839e−005 1.9703 1.00144 1.53621

The numerical results support our theoretical results and show that the new stabilized method
is highly efficient for the time-dependent Stokes problem. It takes less CPU time than the stable
MINI element; see Table IV. Especially, the stabilized P1−P1 element has a better performance
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Figure 2. Error of Example 1: (a) L2-error for the velocity; (b) H1-error for the
velocity; and (c) L2-error for the pressure.

Table IV. CPU time in seconds of Example 1 by using three methods: one implicit Euler step.

1/h 10 20 30 40 50 60 70 80 90 100

P1−P0 0.187 0.484 1.094 1.938 3.11 4.531 6.187 8.266 10.672 13.266
P1−P1 0.188 0.469 1.078 1.906 3.078 4.484 6.11 8.14 10.609 13.203
MIN 0.219 0.515 1.234 2.125 3.391 4.922 6.766 8.937 11.625 14.562

than the stable MINI element both in terms of accuracy and convergence rate for the pressure
approximation.

5.2. Lid-driven cavity problem

For this test, we consider the incompressible lid-driven cavity flow problem defined on the unit
square. The flow domain and the boundary conditions are shown in Figure 3. The initial condition
is taken as u0=0. The mesh consists of triangular elements and the mesh size h= 1

60 . The implicit
backward Euler scheme is also used for the time discretization with time step size �t=0.01.

Figures 4 and 5 depict the velocity vectors and the pressure contours, respectively, at the steady
state by using the three different mixed finite elements, where the stopping criterion

‖un+1
h −unh‖0,�
‖un+1

h ‖0,�
�10−6 (60)

is employed. Here un+1
h is the approximation of uh(t) at time t=(n+1)�t . As in Example 1, we

observe that the difference in velocity among the three methods is small, while that of the pressure
is big.

Table V reports the CPU time needed to reach the steady state for the new stabilized P1−P0,
P1−P1 and MIN elements with different time step sizes, where the number in parentheses denotes
the time steps count satisfying the stopping criterion (60). In Table VI, we also list the values of
ph(1,1)− ph(0,1) at the steady state to test how well the singularity of the problem is approached
by the three mixed elements. It is observed that the three methods have the same convergence
speed in terms of the time steps satisfying the stopping criterion. However, the new stabilized
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Figure 3. Lid-driven cavity flow.

Figure 4. Velocity vectors of the driven cavity flow at the steady state: (a) P1−P0 element; (b) P1−P1
element; and (c) MIN element.

(a) (b) (c)

Figure 5. Pressure contours of the driven cavity flow at the steady state: (a) P1−P0 element; (b) P1−P1
element; and (c) MIN element.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:166–187
DOI: 10.1002/fld



184 Y. SHANG

Table V. CPU time in seconds needed to reach a steady state for the lid-driven cavity problem.

�t 0.5 0.1 0.05 0.01 0.005 0.001

P1−P0 13.641 (5) 21.406 (8) 29.469 (11) 79.375 (30) 132.703 (50) 518.735 (196)
P1−P1 13.469 (5) 21.140 (8) 29.094 (11) 79.063 (30) 131.718 (50) 517.234 (196)
MINI 14.016 (5) 22.390 (8) 30.922 (11) 83.969 (30) 140.000 (50) 547.797 (196)

Table VI. Pressure singularity at the steady state as functions of �t for the lid-driven cavity problem.

�t 0.5 0.1 0.05 0.01 0.005 0.001

P1−P0 168.796 168.796 168.796 168.796 168.796 168.796
P1−P1 200.542 200.542 200.542 200.542 200.542 200.542
MINI 238.544 238.544 238.544 238.544 238.544 238.544
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Figure 6. Evolution of the kinetic energy in time for the lid-driven cavity flow: (a) P1−P0 element;
(b) P1−P1 element; and (c) MIN element.

P1−P0 and P1−P1 elements take less CPU time than the MIN element. On the other hand, we
see from Table VI that the MIN element captures the pressure singularity better than the stabilized
P1−P0 and P1−P1 elements. In Figure 6, we plot the evolution of the kinetic energy ‖un+1

h ‖20,�/2
using �t=0.01 until it reaches its steady state, where we observe the fast convergence toward the
steady state and the absence of oscillations along the process.

6. CONCLUSIONS

In this paper, we have provided a theoretical analysis for a new stabilized finite element method
based on pressure projection in the context of the P1−P0 triangular element and the Q1−P0
quadrilateral element. The analysis has extended the work in [33, 34] for the stationary Stokes
equations to the time-dependent Stokes problem. Numerical results support the theoretical results
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and show that the new stabilized method, successfully applied to the stationary Stokes problem,
is also highly efficient for the non-stationary Stokes problem. Compared with the stable MINI
element, it is simpler and takes less CPU time. Between the new stabilized elements, the stabilized
P1−P1 element shows a better performance than the stabilized P1−P0 element in terms of the
accuracy of the approximate solution. The stabilized P1−P1 element also has a better performance
than the stable MINI element both in terms of accuracy and convergence rate for the pressure
approximation.
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